# Midpoint of Symmedian chord 

Srijon Sarkar

May 18, 2021

In this paper, we discuss the properties of a unique and pretty special point on the symmedian, which happens to be the midpoint of the respective symmedian chord; and some rich configurations associated with it. It is popularly known as the "Dumpty point" in the community; therefore, we will also call it the same, throughout. We will further explore some configurations associated with it, and look into some related examples and problems.

## Contents

1 Introduction and Characterizations
2 More Interesting Properties
3 Walk-through Some Contest Examples
4 An Exploration Through Some Nice Problems 15
5 More Contest Practice 21

## Acknowledgements

I'm highly indebted to Om Gupta for detailed suggestions \& proof-reading, and Dylan Yu for his dylanadi sty and helping me with LaTeX. Special thanks to Evan Chen for his elaborated comments and final remarks; David Altizio for his source, and Jeffrey Kwan for letting me use his solution. Last, but not the least, thanks to the AoPS Community and all its users for posting problems and solutions, from which I took inspiration for this handout at times. Further, everything provided is written to the best of my knowledge and any error is nothing more than an unintentional mistake.

## Prerequisites

Readers are expected to be familiar with conventional notations, properties of Symmedians, HM point, Complete Quadrilaterals, and basic Projective geometry.

## Q1 Introduction and Characterizations

## Notations:

- Let $D, E, F$ be the midpoints of $B C, C A, A B$, respectively, and $P$ to be the foot of $A$-altitude on $B C$.
- Let $H, O, G$ denote the orthocenter, circumcenter, centroid of $\triangle A B C$, respectively, and $H^{\prime}$ be the reflection of $H$ in $B C$.
- The tangents at $B$ and $C$ to $(A B C)$ meet at $X$, and hence, $A X$ constitutes the $A$-symmedian in $\triangle A B C$.
- $A X \cap(A B C)=L$, and $A X \cap B C=Q$.
- $K$ is the intersection of tangents at $A, L$ to $(A B C)$.
- Let $A^{\prime} \in(A B C) \neq A$, such that $A A^{\prime} \| B C$.
- $P_{A}$ is the $A$-HM point in $\triangle A B C$, that is, the foot from $H$ to $A D$.


Other notations will be shown accordingly in latter diagrams.

## Definition

We define midpoint of symmedian chord, $Q_{A}$, as the $A$-Dumpty point.
This very definition yields our following characterization.
Characterization 1. In triangle $A B C$, point $Q_{A}$ satisfies following angle relations:

$$
\angle Q_{A} B A=\angle Q_{A} A C \text { and } \angle Q_{A} C A=\angle Q_{A} A B
$$

Proof. From the harmonic condition of (ABLC) we get that $B C$ concurs with the tangents at $A$ and $L$ at some point $K$. So, we have $B Q$ as a symmedian in $\triangle A B L$, which gives

$$
\angle A B Q_{A}=\angle L B Q=\angle L A C=\angle Q_{A} A C
$$

Similarly, $C Q$ being symmedian in $\triangle A C L$ gives

$$
\angle A C Q_{A}=\angle L C B=\angle L A B=\angle Q_{A} A B .
$$

Note that, the above also gives $\triangle B Q_{A} A \sim \triangle B L C \sim \triangle A Q_{A} C$. (Also here, apart from the Harmonic way, one can also note that, as $A L$ is the polar of $K \mathrm{wrt}^{1}(A B C)$, and $X$ lies on $A L$, hence, from La-Hire's theorem, $K$ lies on the polar of $X$ wrt $(A B C)$, which is $B C$.)

Characterization 2. There exists a spiral similarity at $Q_{A}$ that sends $B A$ to $A C$.
Proof. As we have $\triangle A Q_{A} B \sim \triangle C Q_{A} A$, so, we simply get the common vertex $Q_{A}$ as the unique center of spiral similarity.

We also get

$$
\begin{equation*}
\frac{A Q_{A}}{C Q_{A}}=\frac{Q_{A} B}{Q_{A} A} \Longrightarrow A Q_{A}^{2}=C Q_{A} \cdot B Q_{A} \tag{1}
\end{equation*}
$$

This proves to be really helpful in quite some places. Now, look into the below one.

```
Lemma }
\triangleBLQ A}~\triangleBCA~\triangleLCQ . .
```

Characterization 3. $Q_{A}$ is the isogonal conjugate of the $P_{A}$.

Proof.

$$
\angle Q_{A} B A=\angle Q_{A} A C=\angle B A P_{A}=\angle C B P_{A}
$$

where the last equality follows from properties of $A$-HM point, and the one before it as $\angle B A Q_{A}=$ $\angle C A P_{A}$.

[^0]Characterization 4. In $\triangle A B C$ with circumcenter $O$, the circle with diameter $\overline{A O}$ and (BOC) intersect again on the $A$-symmedian at a point $Q_{A}$.

Proof. We observe that

$$
\angle Q_{A} A B+\angle Q_{A} A C=\angle A \Longrightarrow \angle Q_{A} A B+\angle Q_{A} B A=\angle A \Longrightarrow \angle A Q_{A} B=180^{\circ}-\angle A
$$

Similarly, we get $\angle A Q_{A} C=180^{\circ}-\angle A$. Hence,

$$
\angle B Q_{A} C=2 \angle A=\angle B O C .
$$

So, $Q_{A} \in(B O C)$. (It goes without saying, as $X \in(B O C)$, so, Charac 4 would've hold fine for $(B X C)$ as well; and thus $Q_{A} \in(B X C)$. Also, from there, we could have easily got $Q_{A} \in(B X C O)$ as $O Q_{A} \perp A Q_{A}$, but the stated is just another way.)

Lastly, for the remaining part, note that $O Q_{A} \perp A Q_{A}$, and as $O E \perp C A, O F \perp A B$, it's evident that $Q_{A} \in(A E F)$.

There is another way to prove this $90^{\circ}$ fact, but it uses $\sqrt{b c}$ inversion, which we will explore in later sections.

Characterization 5. Let $\omega_{B}$ denote the circle through $B$ tangent to $A C$ at $A$, and $\omega_{C}$ be the circle through $C$ tangent to $A B$ at $A$. Then, $\omega_{B}$ and $\omega_{C}$ intersect again at $Q_{A}$.

Proof. Using the angle conditions, we note that $\left(B Q_{A} A\right)$ is tangent to $A C$ at $A$, appealing to the Alternate Segment theorem. Likewise, we get $\left(C Q_{A} A\right)$ tangent to $A B$ at $A$; which is what we desired.
(Converse of Charac 5). Assuming the $Q_{A}=\omega_{B} \cap \omega_{C} \neq A$, prove that $Q_{A}$ is the midpoint of $A L$. (Use Equation (1) and Lemma 1.)

Characterization 6. $(B F P)$ and $(C E P)$ intersect again at $Q_{A}$.
Proof.
| Claim - Quadrilateral $B F Q_{A} P$ is cyclic.
Proof.

$$
\begin{aligned}
\angle F Q_{A} B & =360^{\circ}-\angle B Q_{A} O-\angle O Q_{A} F \\
& =\left(180^{\circ}-\angle B Q_{A} O\right)+\left(180^{\circ}-\angle O Q_{A} F\right) \\
& =\angle O C B+\angle O A F \\
& =\angle B=\angle F P B .
\end{aligned}
$$

where the last step follows as $F$ is the midpoint of $\overline{A B}$ in right $\triangle A P B$.
Analogously, we get $C E Q_{A} P$ is cyclic, and thus, $Q_{A}$ as the second intersection of the two circles.
Lastly, observe that, $Q_{A}$ is the $P$-HM point in $\triangle P E F$.

Note that we can get any Characterization from any other and so on, using Phantom points, etc. Now, the reader might want to take a look at the problems given below.
Problem 1 (AIME 2019 II/11). Triangle $A B C$ has side lengths $A B=7, B C=8$, and $C A=9$. Circle $\omega_{1}$ passes through $B$ and is tangent to line $A C$ at $A$. Circle $\omega_{2}$ passes through $C$ and is tangent to line $A B$ at $A$. Let $K$ be the intersection of circles $\omega_{1}$ and $\omega_{2}$ not equal to $A$. Then $A K=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.
Problem 2 (Polish Second Round 1999/4, All-Siberian Open School 2016-17/11.3). Inside acute triangle $A B C$, let $P$ be a point, distinct from the circumcenter of the triangle, such that $\angle P A B=\angle P C A$ and $\angle P A C=\angle P B A$. Prove that $\angle A P O$ is right.
Problem 3 (Dutch IMO TST 2013/1.3). Fix a triangle $A B C$. Let $\Gamma_{1}$ the circle through $B$, tangent to edge in $A$. Let $\Gamma_{2}$ the circle through C tangent to edge $A B$ in $A$. The second intersection of $\Gamma_{1}$ and $\Gamma_{2}$ is denoted by $D$. The line $A D$ has second intersection $E$ with the circumcircle of $\triangle A B C$. Show that $D$ is the midpoint of the segment $A E$.
Problem 4 (St Petersburg 1996, Moscow 2011/2 Oral Team IX). Inside triangle $A B C$, with $\angle A=60^{\circ}$, a point $T$ is chosen such that $\angle A T B=\angle A T C=120^{\circ}$. Let $M, N$ be the midpoints of sides $A B, A C$, respectively. Prove that the quadrilateral $A M T N$ is cyclic.

A variant of the above problem is as follows:
Problem 5 (All Russian Grade 9 2021/6). Given is a non-isosceles triangle $A B C$ with $\angle A B C=$ $60^{\circ}$, and in its interior, a point $T$ is selected such that $\angle A T C=\angle B T C=\angle B T A=120$. Let $M$ the intersection point of the medians in $A B C$. Let $T M$ intersect $(A T C)$ at $K$. Find $T M / M K$.

The reader might have guessed by now, that all the above ones are indeed trivialized by the content of the above section.

Problem 4 and 5 reminds of something?

## Lemma 2

So, we observe that in a $60^{\circ}$ vertex triangle, the Dumpty point wrt that particular vertex, coincides with the Fermat point of the triangle.

## Q2 More Interesting Properties

Next, we will observe some collinearities, concyclicities, and so on and so forth.


## Lemma 3

$\left(B Q Q_{A}\right)$ is internally tangent to $(A B C)$.

Proof.

$$
\angle B Q_{A} Q=\angle B A Q_{A}+\angle A B Q_{A}=\angle B A Q_{A}+\angle Q_{A} A C=\angle A=\angle X B C=\angle X B Q .
$$

Therefore, $\overline{X B}$ is tangent to both $(A B C)$ and $\left(B Q Q_{A}\right)$ at $B$.

```
Lemma 4
O,QA},K\mathrm{ are collinear.
```

Proof. Since $K$ is the intersection of tangents at $A, L$ to $(A B C)$, this follows straight from symmetry.

Without an Harmonic quadrilateral every picture is (almost) incomplete! Whether it's $\triangle B I C$ related configurations or "the foot of altitude in a contact triangle" related, so here goes our one.

## Lemma 5

$A F Q_{A} E$ is harmonic.

Proof. Note that $(A B C)$ and $(A F E)$ are tangent at $A$ by simple homothety, which in turn takes the tangents at $B, C$ to $(A B C)$ to tangents at $F, E$ to $(A F E)$, respectively, and so on. With the intersection of the tangents still on the $A X$, and as we already have $A F Q_{A} E$ cyclic, we're done.

Either way just note that the same homothety maps the entire harmonic quadrilateral (ABLC) to quadrilateral $\left(A F Q_{A} E\right)$, yielding the latter to be harmonic as well.

## Lemma 6

Quadrilateral $Q_{A} O Q D$ is cyclic, and so are the points $Q_{A}, Q, P, U$, where $U=O Q_{A} \cap A P$.

Proof. As both $\angle O D Q$ and $\angle O Q_{A} A$ are right, we're done with the first one. For the latter, we note that $\angle U Q_{A} Q=180^{\circ}-\angle O Q_{A} Q=90^{\circ}=\angle U P Q$.

Suppose, $A D$ meets $(B H C)$ at $Y$.

## Lemma 7

$Q_{A} P_{A} \| X Y$.

Proof.
Claim $-A B Y C$ is a parallelogram.
Proof.

$$
\angle B C Y=\angle B H Y=90^{\circ}-\angle B Y H=90^{\circ}-\angle B C H=\angle B
$$

Similarly, we get for the other part.
Now,

$$
\angle A P_{A} B=180^{\circ}-\angle B P_{A} Y=180^{\circ}-\angle B C Y \stackrel{(*)}{=} 180^{\circ}-\angle B=\angle A+\angle C=\angle A C X
$$

And, as $\angle B A P_{A}=\angle X A C$, we get $\triangle B A P_{A} \sim \triangle X A C$. Analogously, $\triangle B A Q_{A} \sim \triangle Y A C$. Hence,

$$
\frac{B A}{A P_{A}}=\frac{X A}{A C}, \text { and } \frac{B A}{A Q_{A}}=\frac{Y A}{A C} \Longrightarrow \frac{A P_{A}}{Y A}=\frac{A Q_{A}}{X A}
$$

whence, we get the required.
(This same point $Y$ is used in the proof of the very first property of $P_{A}$ - that it's the second intersection of $(A H)$ and $(B H C)$ on $A D$. In that $Y$ is defined as the point such that $A B Y C$ forms a parallelogram, and later it's shown that $Y \in(B H C)$, and that it's the antipode of $H$ in (BHC). Then it's used in angle chase to show that $P_{A} \in A D$.)

Let $E Q_{A}$ intersect $B C$ at $N$.

## Lemma 8

$N$ lies on $\omega_{B}$.
Proof. Let $\omega_{B}$ intersect $B C$ again at $N^{\prime}$. We know that $\angle Q_{A} C A=\angle Q_{A} A B$, so

$$
\angle Q_{A} C A=\angle Q_{A} N^{\prime} C
$$

and also,

$$
\angle Q_{A} A C=\angle Q_{A} N^{\prime} A .
$$

Hence, $C A$ is tangent to both $\left(A Q_{A} N^{\prime}\right)$ (which is $\omega_{B}$ ), and ( $N^{\prime} Q_{A} C$ ). Now, $N^{\prime} Q_{A}$ being the radical axis bisects the common external segment, and thus passes through $E$, forcing $N^{\prime}=N$.

## Lemma 9

The intersection $\left(C E Q_{A} P\right)$ and $(C D L)$ distinct from $C$ lies on the $A$-symmedian ( $J$ in the diagram).

Proof. We begin with a claim.
Claim $-Q_{A} P| | D L$.
Proof.

$$
\angle P Q_{A} L=180^{\circ}-\angle F Q_{A} P-\angle A Q_{A} F=180^{\circ}-\left(180^{\circ}-\angle B\right)-\angle A E F=\angle B-\angle C .
$$

Now, note that as $\angle C L D=\angle B L Q=\angle B L A=\angle B C A$, so,

$$
\angle D L Q_{A}=\angle C L Q-\angle C L D=\angle C B A-\angle B C A=\angle B-\angle C
$$

and thus, $Q_{A} P \| D L$.
Now, let $\left(C E Q_{A}\right)$ intersect $A$-symmedian at $J$. Then, we prove CDLG is cyclic.

$$
\angle C J L=\angle C J Q_{A}=\angle C P Q_{A}=\angle Q P Q_{A}=\angle Q D L .
$$

(The above one might seem to be sudden, and yes indeed, no such motivation for it. I discovered it while exploiting the diagram, and in the hunt to extract any further property left behind in the diagram.)

Remark. It's quite obvious to note that many of the lemmas and problems hold with respect to configurations oriented at any vertex, whether it's $B$ or $C$, wrt the $A$-Dumpty point, in $\triangle A B C$.

We now encourage the reader to try the problems given below.
Problem 6 (Morocco 2015). Let $A B C$ be a triangle and $O$ be its circumcenter. Let $T$ be the intersection of the circle through $A$ and $C$ tangent to $A B$ and the circumcircle of $B O C$. Let $K$ be the intersection of the lines $T O$ and $B C$. Prove that $K A$ is tangent to the circumcircle of $A B C$.

Problem 7 (AIME 2019 I/15). Let $A B$ be a chord of a circle $\omega$, and let $P$ be a point on the chord $\overline{A B}$. Circle $\omega_{1}$ passes through $A$ and $P$ and is internally tangent to $\omega$. Circle $\omega_{2}$ passes through $B$ and $P$ and is internally tangent to $\omega$. Circles $\omega_{1}$ and $\omega_{2}$ intersect at points $P$ and $Q$. Line $P Q$ intersects $\omega$ at $X$ and $Y$. Assume that $A P=5, P B=3, X Y=11$, and $P Q^{2}=\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

Problem 8 (BxMO 2020/3). Let $A B C$ be a triangle. The circle $\omega_{A}$ through $A$ is tangent to line $B C$ at $B$. The circle $\omega_{C}$ through $C$ is tangent to line $A B$ at $B$. Let $\omega_{A}$ and $\omega_{C}$ meet again at $D$. Let $M$ be the midpoint of line segment $[B C]$, and let $E$ be the intersection of lines $M D$ and $A C$. Show that $E$ lies on $\omega_{A}$.
Problem 9 (INAMO Shortlist 2015 G8). $A B C$ is an acute triangle with $A B>A C . \Gamma_{B}$ is a circle that passes through $A, B$ and is tangent to $A C$ on $A$. Define similar for $\Gamma_{C}$. Let $D$ be the intersection $\Gamma_{B}$ and $\Gamma_{C}$ and $M$ be the midpoint of $B C$. $A M$ cuts $\Gamma_{C}$ at $E$. Let $O$ be the center of the circumscibed circle of the triangle $A B C$. Prove that the circumscibed circle of the triangle $O D E$ is tangent to $\Gamma_{B}$.

Problem 10 (ELMO 2014/5, Sammy Luo). Let $A B C$ be a triangle with circumcenter $O$ and orthocenter $H$. Let $\omega_{1}$ and $\omega_{2}$ denote the circumcircles of triangles $B O C$ and $B H C$, respectively. Suppose the circle with diameter $\overline{A O}$ intersects $\omega_{1}$ again at $M$, and line $A M$ intersects $\omega_{1}$ again at $X$. Similarly, suppose the circle with diameter $\overline{A H}$ intersects $\omega_{2}$ again at $N$, and line $A N$ intersects $\omega_{2}$ again at $Y$. Prove that lines $M N$ and $X Y$ are parallel.
Problem 11 (ELMO Shortlist 2012 G7, Alex Zhu). Let $\triangle A B C$ be an acute triangle with circumcenter $O$ such that $A B<A C$, let $Q$ be the intersection of the external bisector of $\angle A$ with $B C$, and let $P$ be a point in the interior of $\triangle A B C$ such that $\triangle B P A$ is similar to $\triangle A P C$. Show that $\angle Q P A+\angle O Q B=90^{\circ}$.

Continuing with some related properties and results, which don't actually involve the $Q_{A}$ point, but are nice to observe, here we have the below ones.


## Lemma 10

$L, D, A^{\prime}$ are collinear.
Proof. Note that

$$
\angle A L D=\angle B L D-\angle B L Q=\angle C L Q-\angle B L A=\angle B-\angle C
$$

where $\angle B L D=\angle C L Q$, as $L A$ constitutes the $L$-symmedian in $\triangle L B C$. But, $\angle A L A^{\prime}=\angle A C A^{\prime}=$ $\angle B-\angle C$, so we're done.

## Lemma 11

$(B D L)$ is tangent to $A B$ at $B$.
Proof. $\angle A B D=\angle A^{\prime} C B=\angle A^{\prime} L B=\angle D L B$.
Similarly, (CDL) is tangent to $C A$ at $C$.

## Lemma 12

( $Q D L$ ) is internally tangent to $(A B C)$, at $L$.
Proof. $\angle K L Q=\angle K L A=\angle L A^{\prime} A=\angle L D Q$.

## Lemma 13

Points $A, O, D, L, K$ lie on a circle with center as the midpoint $O K$. (See Lemma 4.)
Proof. $\angle O A K, \angle O L K, \angle O D K$ all are $90^{\circ}$.

## Lemma 14

$P, H^{\prime}, L, D$ are concyclic.
Proof. $\angle H^{\prime} L D=\angle H^{\prime} L A^{\prime}=90^{\circ}=\angle A P D$.

## Lemma 15

Let $V$ be a point on $B C$, and $A^{\prime} V$ intersect $(A B C)$ again at $S$, then, $P, V, H^{\prime}, S$ are concyclic.
Proof. $\angle A P C=90^{\circ}=\angle H^{\prime} P C=\angle H^{\prime} A A^{\prime}=\angle H S A^{\prime}=\angle H S V$.
(I wouldn't have got the above one, hadn't I joined $A^{\prime}$ and $P_{A}$ mistakenly, instead of $A^{\prime}$ and $G$ while constructing the GP line configuration, which readers will found later. Later, it was found that there is nothing special about the point, $V$ can be any point on $B C$, and that led to the statement presented.)

## Lemma 16

$S, V, Q, L$ are concyclic as well.
Proof. $\angle L Q D=\angle L A A^{\prime}=\angle L S A^{\prime}=\angle L S V$.

## Lemma 17

$(C E O D), \omega_{C}$ and the $A$-median share a common point ( $T$ in the diagram).
Proof. Let $A D$ intersect (CEO) at $T$. Then, we show $T$ lies on $\omega_{C}$.
Claim - (AFE) and (CED) are reflection of each other across $O E ; Q_{A}, T$ get swapped under this reflection.

Proof. It suffices to show $\angle O E T=\angle O E Q_{A}$, as (AFE) and (CED) are reflections by symmetry. So, firstly we note that

$$
\begin{aligned}
\angle O A Q_{A}=\angle O A Q & =\angle A-\angle B A Q-\angle C A O \\
& =\angle A-\angle C A P_{A}-\left(90^{\circ}-\angle B\right) \\
& =90^{\circ}-(\angle C+\angle C A D) \\
& =90^{\circ}-\angle A D B=\angle O D A .
\end{aligned}
$$

Now,

$$
\angle O E T=\angle O D T=\angle O D A=\angle O A Q_{A}=\angle O E Q_{A}
$$

whence the desired.

That yields $Q_{A}, T$ are reflections across $O E$ ! Finally, to finish observe that

$$
\angle B A T=\angle B A P_{A}=\angle C A Q_{A}=\angle E A Q_{A}=\angle E C T=\angle A C T .
$$

Motivation for this point $T$ came from INAMO Shortlist 2015 G8. Similar things hold with everything in respect to vertex $B$ in $\triangle A B C$.

## GP line

Readers are advised to enjoy \& explore the configuration given below, like the above ones.


## Lemma 18

Let $\omega$ be a circle through $E$ and $F$ that is tangent to $(A B C)$ at a point $R \neq A$. Let us re-define $K$ here, as the tangent to $(A B C)$ at $A$ which intersects line $B C$ at $K$. Prove that

1. (AoPS). $A R \perp R K$, that is, $A R$ is the polar of $M$ wrt $\Omega$., where $M$ is the midpoint of $A K$.
2. (IMO Shortlist 2011 G4). G, $P$ and $R$ are collinear.
3. (USA TST 2018/2). $\angle B R E=\angle F R C$.
4. $R F, R E$ are the $R$-symmedian of triangles $B R P, C R P$.
5. $R, P, Q, L$ are concyclic.
6. (BPR) is tangent to $A B$ at $B$, and likewise, $(C P R)$ is tangent to $C A$ at $C$. (Similar to Lemma 11.)
(For more configurations and details related to this point $R$, see here.)

## Q3 Walk-through Some Contest Examples

As this work is dedicated towards Dumpty points, so it's indeed pointless to say "Take a guess! What can be the point?", etc.

## Example 19 (Macedonia 2017/4)

Let $O$ be the circumcenter of the acute triangle $A B C(A B<A C)$. Let $A_{1}$ and $P$ be the feet of the perpendicular lines drawn from $A$ and $O$ to $B C$, respectively. The lines $B O$ and $C O$ intersect $A A_{1}$ in $D$ and $E$, respectively. Let $F$ be the second intersection point of $(A B D)$ and $(A C E)$. Prove that the angle bisector of $\angle F A P$ passes through the incenter of $\triangle A B C$.

## Walkthrough.

(a) Have a close look at the cyclic quadrilaterals of $(A F B D)$ and (AEFC).
(b) Chase the angles surrounding $D$ and $E$, to get $\triangle A B F \sim \triangle C A F$. In other words, get $(A D B)$ tangent to $A C$ at $A$, and similarly $(A E C)$ tangent to $A B$ at $A$.
(c) So, we get $F$ as the $A$-Dumpty point in $\triangle A B C$, and thus $A F$ and $A P$ as isogonals.

The below one is a very popular and known example that comes whenever talking about Dumpty point.

## Example 20 (USAMO 2008/2)

Let $A B C$ be an acute, scalene triangle, and let $M, N$, and $P$ be the midpoints of $\overline{B C}, \overline{C A}$, and $\overline{A B}$, respectively. Let the perpendicular bisectors of $\overline{A B}$ and $\overline{A C}$ intersect ray $A M$ in points $D$ and $E$ respectively, and let lines $B D$ and $C E$ intersect in point $F$, inside of triangle $A B C$. Prove that points $A, N, F$, and $P$ all lie on one circle.

## Walkthrough.

(a) Consider a phantom point $F^{\prime}$ as the $A$-Dumpty point, and further let $B F^{\prime} \cap A M=D^{\prime}$.
(b) Exploit the properties of $F^{\prime}$, and try to get $D^{\prime} A=D^{\prime} B$.
(c) Carry on the same by considering $E^{\prime}$, and lastly observe a bit to get done.

Example 21 (XVII Sharygin Correspondence Round P15, Anant Mudgal and Navilarekallu Tejaswi) Let $A P B C Q$ be a cyclic pentagon. A point $M$ inside triangle $A B C$ is such that $\angle M A B=\angle M C A$, $\angle M A C=\angle M B A$ and $\angle P M B=\angle Q M C=90^{\circ}$. Prove that $A M, B P$, and $C Q$ concur.

## Walkthrough.

(a) Firstly, note that we have $M$ as the $A$-Dumpty in $\triangle A B C$.
(b) Use the properties of $M$, to get the configuration, and note there can be two situations (excluding the isosceles one).
(c) Take one, and consider $B Q \cap A M=E_{1}$ and $C P \cap A M=E_{2}$, and then angle chase (using the angles you already have!) to get some cyclic quadrilaterals involving those points.
(d) Get $E_{1}=E_{2}$, and finish with radical axes.

Example 22 (AIME 2016 I/15)
Circles $\omega_{1}$ and $\omega_{2}$ intersect at points $X$ and $Y$. Line $\ell$ is tangent to $\omega_{1}$ and $\omega_{2}$ at $A$ and $B$, respectively, with line $A B$ closer to point $X$ than to $Y$. Circle $\omega$ passes through $A$ and $B$ intersecting $\omega_{1}$ again at $D \neq A$ and intersecting $\omega_{2}$ again at $C \neq B$. The three points $C, Y, D$ are collinear, $X C=67, X Y=47$, and $X D=37$. Find $A B^{2}$.

There are many ways to get through, but we will motivate the reader to go around the Dumpty way, for obvious reasons.

## Walkthrough.

(a) Note that the intersection of $A D$ and $B C$ (say $F$ ) lies on line $X Y$.
(b) Observe $(A X Y D)$ and $(B X Y C)$ with focus on $\triangle F D Y$, to extract another cyclic from the picture.
(c) What's special about quadrilateral $A F B Y$ ?
(d) $X C$ and $X D$ are on either side, with $X Y$ in between, so in this scenario of Dumpty's, it's quite motivated to consider the product $X C \cdot X D$.
(e) Try to relate the above one with $A B^{2}$, using the things you already have in hand; and get done. (Consider the intersection of $A B$ and $F Y$, then work-out.)

Remark. Note that, we also get $X$ is the $Y$-HM point in $\triangle Y A B$ in the above picture, which is indeed the more motivated one to get at first, but the Dumpty observation proves to more useful here. At the very end of Charac 6, we also got something similar - HM \& Dumpty in the same picture; this forced relevance is to stress on the fact that there will be instances where both the points pop-up, but we need to deal mindfully and consider the hopefully helpful one, at the moment.

## Example 23 (Indian Practice TST 2019/1.2)

Let $A B C$ be a triangle with $\angle A=\angle C=30^{\circ}$. Points $D, E, F$ are chosen on the sides $A B, B C, C A$ respectively so that $\angle B F D=\angle B F E=60^{\circ}$. Let $p$ and $p_{1}$ be the perimeters of the triangles $A B C$ and $D E F$, respectively. Prove that $p \leq 2 p_{1}$.

## Walkthrough.

(a) Find the Dumpty point in the picture. (Note that $F$ is a Dumpty point wrt vertex of some triangle.)
(b) $p$ is commensurable in terms of some side, so find it. (Take the midpoint of $A C$.)
(c) Apply cosine rule to a suitable side in $\triangle D E F$, and use a specific property of $F$ from (a), to get $D E \geq \sqrt{3} B F$. (AM-GM will be used somewhere!)
(d) For the remaining, use inequalities on sides of the involved triangle, and chase the desired of $p \leq 2 p_{1}$.

Quite interesting to note, that in most of the examples above, $F$ is the required Dumpty point (and I didn't change point labels). By now, the reader should have realized how important is Equation (1).

## Q4 An Exploration Through Some Nice Problems

Here, we will look into various inter-related problems, with an inclination towards parallel lines and parallelograms. Also, let us not consider a few of the notations we used above, that is, here we will be re-using some of them with different meanings. (Like $D, E, F$ below are not midpoints of respective sides, but points such that $D E \| A B$ and $D F \| A C$, then, point $X$ in the first part, and so.)

Condition. Let $A B C$ be a triangle with $G$ as its centroid. Let $D$ be a variable point on segment $B C$. Points $E$ and $F$ lie on sides $A C$ and $A B$ respectively, such that $D E \| A B$ and $D F \| A C$. Show that,
(I) USA TST 2008/7. As $D$ varies along segment $B C$, $(A E F)$ passes through a fixed point $X$ such that $\angle B A G=\angle C A X$.


Solution. It's pretty obvious what the starting and only claim could be, and indeed what the point happens to be.

Claim - The required point $X$, is the $A$-Dumpty point.
We take $X$ to be defined as in Charac 4, and use Charac 2 to observe that,

$$
\frac{B F}{F A}=\frac{B D}{D C}=\frac{A E}{E C}
$$

so, the spiral similarity at $X$ takes $F$ to $E$, that is, $\triangle X F A \sim \triangle X E C$, which implies $\angle X F A=\angle X E C$, and thus, $A F X E$ is cyclic. And as $\angle B A X=\angle G A C$, we're done.

Let us now re-label $X$ as $Q_{A}$.
(II) Winter SDPC 2018-2019 P7 (b). If $D$ lies on line $A Q_{A}$, then $(A E F)$ is tangent to $\left(B X_{A} C\right)$.


Solution. So, here we have $D=A Q_{A} \cap B C$

$$
\Longrightarrow \measuredangle Q_{A} D F=\measuredangle Q_{A} A C=\measuredangle Q_{A} B A=\measuredangle Q_{A} B F
$$

Hence, we get $Q_{A} F B D$ as cyclic. (We covered this same circle ( $Q_{A} B D$ ) in Lemma 3, just there $D$ was labelled as Q.)

Next, we note that

$$
\measuredangle F Q_{A} B=\measuredangle F D B=\measuredangle A C B=\measuredangle A C Q_{A}+\measuredangle Q_{A} C B=\measuredangle F A Q_{A}+\measuredangle Q_{A} C B
$$

where $\measuredangle$ signifies angles measures modulo $180^{\circ}$. So, appealing to angles in alternate segment, we get that $\left(A E Q_{A} F\right)$ and $\left(B Q_{A} C\right)$ are (externally) tangent to each other at $Q_{A}$.

Sub-condition. If $A B C$ is isosceles with $A B=A C$, and $A Z$ as its circumdiameter.
(III) Latvia TST 2020 Round 1. Then $Z D \perp E F$.

## Walkthrough.

(a) Observe that $\triangle B F D$ and $\triangle D E C$ are isosceles, both being directly similar to $\triangle B A C$. (Focus on $\overline{A F}$ and $\overline{A E}$.)
(b) Let the intersections of $F D$ and $E D$ with $A Z$ to be $X$ and $Y$, respectively. Then, prove that $D X Y$ isosceles.
(c) Show that $E C=F X$, and thus, $F X C E$ is parallelogram. (Break $C E$ into sum of other segments.)
(d) Note that $Z$ is the orthocenter of $\triangle D C X^{2}$, and finish.

[^1]Try the below one.
Lemma 24
Both the quadrilaterals of $B F Q_{A} X$ and $C E Q_{A} Y$ are cyclic.


Observation. As, $A F E Q_{A}$ is cyclic, and we also have $A Q_{A}$ as the bisector of $\angle F A E$, so by Fact 5, we get $Q_{A}$ as the midpoint of arc $E F$ opposite to $A$. Note, since the triangle is isosceles, the $A$-symmedian chord is the $A Z$ itself, with the $A$-Dumpty point coinciding with the circumcenter.
(IV) Peru EGMO TST 2020/5. If line $E F$ meets $D Z$ at $Q$ and the bisector of $\angle E D F$ at $R$, then $B, Q, R, C$ are concyclic.

## Walkthrough.

(a) Let $A S \| E F$, where $S=(A B C) \cap(A E F) \neq A$, and observe that there exists a spiral similarity centered at $S(\sigma)$ that takes $F E$ to $B C$ (well known). Prove that it takes $R$ to $D .^{3}$
(b) Angle chase to get $\angle C D R=90^{\circ}$, and that $\sigma$ taking $R D$ to $Q_{A} Z$ is a homothety.
(c) Lastly, let $E F$ meet $B C$ at $W$, and observe quadrilateral $W S R D$.

[^2]The below ones are the last set of related configurations here. So, let's proceed. Readers are advised to first try the just below one.

Problem 12 (Peru TST 2006/4, Dutch IMO TST 2019 2.3). Let $A B C$ be an acute triangle with $O$ as the circumcenter. Point $Q$ lies on (BOC), so that $O Q$ is a diameter, and points $M, N$ lies on $C Q, B C$ respectively, such that $A N C M$ forms a parallelogram. Prove that (BOC), $A Q$ and $N M$ pass through a common point.

Solution is basically the single and obvious claim here, as follows. Here also, let's not consider a

few of the notations we used above, as we will be re-using some of them with different meanings. (Like $X$ and Q.)

## Solution.

Claim - Common point is the $A$-Dumpty point.
We know that $Q$ constitutes the intersection of tangents at $B, C$ to $(A B C)$, and with Charac 4 , we get $A Q \cap(B O C)$ as the $A$-Dumpty point. Let's denote it by $Q_{A}$ (as usual). And further let $E$ to be the midpoint of $C A$, and $A Q \cap(A B C)=X$. It's just remains to show that $Q_{A} \in M N$.

Proof.

$$
\angle A Q_{A} C=180^{\circ}-\angle C Q_{A} Q=180^{\circ}-\angle C B Q=180^{\circ}-\angle C M A
$$

So, $M \in\left(A Q_{A} C\right)$. Whence,

$$
\angle A Q_{A} M=\angle A C M=\angle A X C
$$

and thus $Q_{A} M \| X C$. But, $Q_{A} E \| X C$, so $Q_{A}, E, M$ are collinear. $A M C N$ being a parallelogram, $E \in M N$, and thus we're done.

Now, have a look at next one.

Problem 13 (IMO Shortlist 2003 G5, Hojoo Lee). Let $A B C$ be an isosceles triangle with $A C=$ $B C$, whose incentre is $I$. Let $P$ be a point on the circumcircle of the triangle $A I B$ lying inside the triangle $A B C$. The lines through $P$ parallel to $C A$ and $C B$ meet $A B$ at $D$ and $E$, respectively. The line through $P$ parallel to $A B$ meets $C A$ and $C B$ at $F$ and $G$, respectively. Prove that the lines $D F$ and $E G$ intersect on the circumcircle of the triangle $A B C$.

We will reinterpret the situation in terms of $\triangle P A B$; then, $C$ is the intersection of the tangents at $A, B$ to ( $P A B$ ).
Comment. $P$ is taken outside $\triangle A B C$ to make the connection more explicit; the proof is the same. Method I. After the reinterpretation, it's pretty clear from Problem 12 above, that the intersection point is the $P$-Dumpty point in $\triangle P A B$.


But, we present another solution built on homothety, which is quite interesting to note.
Method II (by Jeffrey Kwan). Let PC intersect $(A B C)$ at $T, A B$ at $K$, and (PAB) at $Q$.
Claim $-T$ is the desired point of intersection.
Using Lemma 3, we get

$$
\begin{equation*}
C P \cdot C Q=C B^{2}=C K \cdot C T \Longrightarrow \frac{C Q}{C T}=\frac{C K}{C P} \tag{*}
\end{equation*}
$$

Observe that, there exists a homothety that takes $\triangle P D E$ to $\triangle C F G$, with center at $X=P C \cap$ $D F \cap E G$ (which means concurrency of the three).

We note that

$$
\frac{P X}{X C}=\frac{D E}{F G} .
$$

Finally,

$$
\frac{P T}{T C}=1-\frac{C Q}{C T} \stackrel{(*)}{=} 1-\frac{C K}{C P}=\frac{K P}{C P}=\frac{D E}{F G}
$$

so, $X=T$.
For the last equality, we used $\triangle P D E \cup K \sim \triangle C F G \cup P$ (which basically means that $P D E K$ and CFGP are similar figures).

## Behaviour of Dumpty point under Inversion

Lastly, here is a small note on the aforementioned.

- Inversion wrt $(A B C)$ sends $\left(O Q_{A} B C\right)$ to line $B C$, and $Q_{A}$ to $K$, yielding $\angle O Q_{A} A=\angle O A K=$ $90^{\circ}$.
- When we perform an inversion at vertex $A$ of $\triangle A B C$ with power $r^{2}=A B \cdot A C$, it takes $B, C, Q_{A}$ to $B^{\prime}, C^{\prime}, Q_{A^{\prime}}^{\prime}$ such that $A B^{\prime} Q_{A}^{\prime} C^{\prime}$ forms a parallelogram. And further, $O$ to the reflection of $A$ over $B^{\prime} C^{\prime}$, whence $\angle A O^{\prime} Q_{A}^{\prime}=90^{\circ}$, which implies $\angle A Q_{A} O=90^{\circ}$. (Try the same for $\sqrt{\frac{b c}{2}}$, and observe.)
(For the behaviour of HM point under inversion, see here. Readers are suggested to check the discussion here, and a solution here.)


## Q5 More Contest Practice

Problem 14 (CMC 4, CIME II/15). Let $A B C$ be an acute triangle with $A B=2$ and $A C=3$. Let $O$ be its circumcenter and let $M$ be the midpoint of $\overline{B C}$. It is given that there exists a point $P$ on (BOC) such that $\angle A P B=\angle A P C$ and $\angle A O M=\angle A P M$. Then $B C^{2}=\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m+n$.
Problem 15 (STEMS 2020 Category A/12). Let $A B C$ be a triangle with $A B=4, A C=9$. Let the external bisector of $\angle A$ meet $(A B C)$ again at $M \neq A$. A circle with center $M$ and radius $M B$ meets the internal bisector of angle $A$ at points $P$ and $Q$. Determine the length of $P Q$.
Problem 16 (Arab 2020/2). Let $A B C$ be an oblique triangle and $H$ be the foot of altitude passing through $A$. Let $I, J, K$ denote the midpoints of segments $A B, A C, I J$, respectively. Show that the circle $c_{1}$ passing through $K$ and tangent to $A B$ at $I$, and the circle $c_{2}$ passing through $K$ and tangent to $A C$ at $J$, intersect at second point $K^{\prime}$, and that $H, K$ and $K^{\prime}$ are collinear.
Problem 17 (Greece 2018/2). Let $A B C$ be an acute triangle with $A B<A C<B C$ and $c(O, R)$ the circumscribed circle. Let $D, E$ be points in the small arcs $A C, A B$ respectively. Let $K$ be the intersection point of $B D, C E$ and $N$ the second common point of the circumscribed circles of the triangles $B K E$ and $C K D$. Prove that $A, K, N$ are collinear if and only if $K$ belongs to the symmedian of $A B C$ passing from $A$.
Problem 18 (INMO 2020/1). Let $\Gamma_{1}$ and $\Gamma_{2}$ be two circles of unequal radii, with centres $O_{1}$ and $\mathrm{O}_{2}$ respectively, intersecting in two distinct points $A$ and $B$. Assume that the centre of each circle is outside the other circle. The tangent to $\Gamma_{1}$ at $B$ intersects $\Gamma_{2}$ again in $C$, different from $B$; the tangent to $\Gamma_{2}$ at $B$ intersects $\Gamma_{1}$ again at $D$, different from $B$. The bisectors of $\angle D A B$ and $\angle C A B$ meet $\Gamma_{1}$ and $\Gamma_{2}$ again in $X$ and $Y$, respectively. Let $P$ and $Q$ be the circumcentres of triangles $A C D$ and $X A Y$, respectively. Prove that $P Q$ is the perpendicular bisector of the line segment $O_{1} O_{2}$.
Problem 19 (Canada 2015/4). Let $A B C$ be an acute triangle with circumcenter $O$. Let $I$ be a circle with center on the altitude from $A$ in $A B C$, passing through vertex $A$ and points $P$ and $Q$ on sides $A B$ and $A C$. Assume that $B P \cdot C Q=A P \cdot A Q$. Prove that $I$ is tangent to $(B O C)$.
Problem 20 (IMO 2014/4). Let $P$ and $Q$ be on segment $B C$ of an acute triangle $A B C$ such that $\angle P A B=\angle B C A$ and $\angle C A Q=\angle A B C$. Let $M$ and $N$ be the points on $A P$ and $A Q$, respectively, such that $P$ is the midpoint of $A M$ and $Q$ is the midpoint of $A N$. Prove that the intersection of $B M$ and $C N$ is on the circumference of triangle $A B C$.
Problem 21 (Iran TST 2015 1.1.2). $I_{b}$ is the $B$-excenter of the triangle $A B C$ and $\omega$ is the circumcircle of this triangle. $M$ is the middle of arc $B C$ of $\omega$ which doesn't contain $A . M I_{b}$ meets $\omega$ at $T \neq M$. Prove that $T B \cdot T C=T I_{b}^{2}$.
Problem 22 (IGO Medium 2016/5). Let the circles $\omega$ and $\omega^{\prime}$ intersect in points $A$ and $B$. The tangent to circle $\omega$ at $A$ intersects $\omega^{\prime}$ at $C$ and the tangent to circle $\omega^{\prime}$ at $A$ intersects $\omega$ at $D$. Suppose that the internal bisector of $\angle C A D$ intersects $\omega$ and $\omega^{\prime}$ at $E$ and $F$, respectively, and the external bisector of $\angle C A D$ intersects $\omega$ and $\omega^{\prime}$ at $X$ and $Y$, respectively. Prove that the perpendicular bisector of $X Y$ is tangent to ( $B E F$ ).
Problem 23 (IMO Shortlist 2015 G4). Let $A B C$ be an acute triangle and let $M$ be the midpoint of $A C$. A circle $\omega$ passing through $B$ and $M$ meets the sides $A B$ and $B C$ at points $P$ and $Q$ respectively. Let $T$ be the point such that BPTQ is a parallelogram. Suppose that $T$ lies on the circumcircle of $A B C$. Determine all possible values of $\frac{B T}{B M}$.

Problem 24 (USAJMO 2015/5). Let $A B C D$ be a cyclic quadrilateral. Prove that there exists a point $X$ on segment $\overline{B D}$ such that $\angle B A C=\angle X A D$ and $\angle B C A=\angle X C D$ if and only if there exists a point $Y$ on segment $\overline{A C}$ such that $\angle C B D=\angle Y B A$ and $\angle C D B=\angle Y D A$.
Problem 25 (IMO Shortlist 2011 G6). Let $A B C$ be a triangle with $A B=A C$ and let $D$ be the midpoint of $A C$. The angle bisector of $\angle B A C$ intersects the circle through $D, B$ and $C$ at the point $E$ inside the triangle $A B C$. The line $B D$ intersects the circle through $A, E$ and $B$ in two points $B$ and $F$. The lines $A F$ and $B E$ meet at a point $I$, and the lines $C I$ and $B D$ meet at a point $K$. Show that $I$ is the incentre of triangle $K A B$.
Problem 26 (IGO 2014/3). A tangent line to circumcircle of acute triangle $A B C(A C>A B)$ at $A$ intersects with the extension of $B C$ at $P . O$ is the circumcenter of $\triangle A B C$. Point $X$ lying on $O P$ such that $\measuredangle A X P=90^{\circ}$. Points $E$ and $F$ lying on $A B$ and $A C$, respectively, and they are in one side of line $O P$ such that $\measuredangle E X P=\measuredangle A C X$ and $\measuredangle F X O=\measuredangle A B X . K, L$ are points of intersection of $E F$ with $(A B C)$. Prove that $O P$ is tangent to (KLX).
Problem 27 (China TST 2019 2.2.5). Let $M$ be the midpoint of $B C$ of triangle $A B C$. The circle with diameter $B C, \omega$, meets $A B, A C$ at $D, E$ respectively. $P$ lies inside $\triangle A B C$ such that $\angle P B A=$ $\angle P A C, \angle P C A=\angle P A B$, and $2 P M \cdot D E=B C^{2}$. Point $X$ lies outside $\omega$ such that $X M \| A P$, and $\frac{X B}{X C}=\frac{A B}{A C}$. Prove that $\angle B X C+\angle B A C=90^{\circ}$.
Problem 28 (Iranian TST 2019 2.1.2). In a triangle $A B C, \angle A$ is $60^{\circ}$. On sides $A B$ and $A C$ we make two equilateral triangles (outside the triangle $A B C$ ) $A B K$ and $A C L . C K$ and $A B$ intersect at $S, A C$ and $B L$ intersect at $R, B L$ and $C K$ intersect at $T$. Prove the radical centre of circumcircle of triangles $B S K, C L R$ and $B T C$ is on the median of vertex $A$ in triangle $A B C$.

Problem 29 (China TST 2021 1.2.5). Given a triangle $A B C$, a circle $\Omega$ is tangent to $A B, A C$ at $B, C$, respectively. Point $D$ is the midpoint of $A C, O$ is the circumcenter of triangle $A B C$. A circle $\Gamma$ passing through $A, C$ intersects the minor $\operatorname{arc} B C$ on $\Omega$ at $P$, and intersects $A B$ at $Q$. It is known that the midpoint $R$ of minor arc $P Q$ satisfies that $C R \perp A B$. Ray $P Q$ intersects line $A C$ at $L, M$ is the midpoint of $A L, N$ is the midpoint of $D R$, and $X$ is the projection of $M$ onto $O N$. Prove that the circumcircle of triangle $D N X$ passes through the center of $\Gamma$.

## References

- Luo, S. Pohoata, C. (2013). Let's Talk About symmedians!
- Pause, K. (2016). On Two Special Points In Triangle
- Chen, E. (2016). Euclidean Geometry in Mathematical Olympiads
- Chen, E. (2016). The Incenter / Excenter Lemma, Fact 5
- Mudgal, A. Handa, G. (2017). A Special Point on the Median
- Baca, J. (2019). On a special center of spiral similarity
- Bhattacharyya, A. (2020). Humpty-Dumpty points
- AoPS user - i3435. (2021). "American" Olympiad Triangle Geometry Configurations
- https://artofproblemsolving.com/community


## Further Read

For a brief overview on the Artzt Parabola check out the post on "Parabola with Focus at Dumpty Point, and Directrix Perpendicular to A-median \& NPC"; and also here. Is the parabola here same as the Dumpty / Artzt parabola? ${ }^{4}$
The reader might want to explore and have a look here, here, and here.

Srijon Sarkar,
India,
Email: srijonrick@gmail.com.

[^3]
[^0]:    ${ }^{1}$ stands for "with respect to", and the abbreviation will be used henceforth

[^1]:    ${ }^{2}$ This is when $X$ lies outside $(A B C)$, if $X$ lies inside $(A B C)$, then, $D$ would be the orthocenter of $\triangle Z C X$; as it happens in an orthocentric system.

[^2]:    ${ }^{3}$ Hint: Use angle-bisector theorem \& ratios, and the Gliding principle, to note that $\triangle S F B \sim \triangle S R D \sim \triangle S E C$.

[^3]:    ${ }^{4}$ Yes, indeed. It's Exercise 100 of Chapter 2 of Conic Sections Treated Geometrically by W.H. Besant. Thanks to David Altizio for it

