RSA Algorithm

Srijon Sarkar, March 2020

Prerequisites: Some basic concepts of Number Theory, like Modular Arithmetic (Congruences), Bezout's Theorem and most importantly, Euler's theorem and Euler's totient function.

There are two kids, namely Alice and Bob. Alice wants to send a message to Bob but he wants to keep it confidential, from all others. If Alice tries to send that message via any route, then there are enough chances that a third person may intervene, and get the message.
So, they select two large primes p and q and compute N which is equal to the product of the primes i.e. $N=p q$. So, the conclusion up till now is that both of them knows p and q. Now, Alice chooses some x which is co-prime to $\phi(N)$ and computes $E=M^{x}(\bmod N)$. After that, he sends E to Bob. So, Bob had p and q and now he knows $\phi(N)$. So, what we have till now is: two large primes $-p$ and q, the product, $N=p q$, and $E=M^{x}(\bmod N)$ where x is co-prime to $\phi(N)$.
Now, since Bob knows $\phi(N)$, he can find x which is co-prime to y,such that, $x y \equiv 1(\bmod \phi(N))$. That implies

$$
x y=\phi(N) * Q+1 \Longrightarrow M^{\phi(N)} \equiv 1(\bmod N)
$$

On raising to the power q on both sides of the modulo, we get:

$$
\Longrightarrow M^{\phi(N) \cdot Q} \equiv 1(\bmod N)
$$

On multiplying M to both sides of the modulo, we get:

$$
M^{\phi(N) \cdot Q+1} \equiv 1(\bmod N) \Longrightarrow M^{x y} \equiv 1(\bmod N)
$$

Note: Here, Q is the quotient when $x y$ is divided by $\phi(N)$.

Therefore, Bob can simply compute $D=E^{y}(\bmod N)$.
And as, $D \equiv E^{y} \equiv M^{x y} \equiv M(\bmod N)$, so, Bob gets the desired message M. This entire process (algorithm) is known as the RSA Algorithm; RSA stands for Rivest-Shamir-Adleman.

Comment: Still after all of these, even if someone intervenes and is able to know N, then also that person wouldn't be able to factorize N to get p and q. Since we're considering large primes, they would in the form of Mersenne Primes, $N(P)=2^{P}-1$, so, factorizing wouldn't be possible. It's a hefty task, even for the large super computers to factorize in such a manner. To know more about RSA Algorithm and Mersenne Primes, search on google.

